Abstract

BackgroundThe yeast Metschnikowia fructicola is an antagonist with biological control activity against postharvest diseases of several fruits. We performed a transcriptome analysis, using RNA-Seq technology, to examine the response of M. fructicola with citrus fruit and with the postharvest pathogen, Penicillium digitatum.ResultsMore than 26 million sequencing reads were assembled into 9,674 unigenes. Approximately 50% of the unigenes could be annotated based on homology matches in the NCBI database. Based on homology, sequences were annotated with a gene description, gene ontology (GO term), and clustered into functional groups. An analysis of differential expression when the yeast was interacting with the fruit vs. the pathogen revealed more than 250 genes with specific expression responses. In the antagonist-pathogen interaction, genes related to transmembrane, multidrug transport and to amino acid metabolism were induced. In the antagonist-fruit interaction, expression of genes involved in oxidative stress, iron homeostasis, zinc homeostasis, and lipid metabolism were induced. Patterns of gene expression in the two interactions were examined at the individual transcript level by quantitative real-time PCR analysis (RT-qPCR).ConclusionThis study provides new insight into the biology of the tritrophic interactions that occur in a biocontrol system such as the use of the yeast, M. fructicola for the control of green mold on citrus caused by P. digitatum.

Highlights

  • The yeast Metschnikowia fructicola is an antagonist with biological control activity against postharvest diseases of several fruits

  • Various mechanisms have been described, including antibiosis, production of lytic enzymes, parasitism, induction of host resistance, and competition for limiting nutrients and space [2,8,9,10]. Results described in these studies are mostly correlative and provide indirect evidence for possible involvement of one or more of these components in the mechanism of action. This may be due to the lack of an understanding of the key biochemical and molecular processes occurring within tritrophic interactions that define the effectiveness of a biocontrol system

  • The genome of M. fructicola has not been sequenced, de-novo assembly of the transcriptome of M. fructicola resulted in the identification of a total of 9674 unigenes, half of which could be annotated based on homology to genes in the NCBI database (Figures 1 and 2)

Read more

Summary

Introduction

The yeast Metschnikowia fructicola is an antagonist with biological control activity against postharvest diseases of several fruits. Various mechanisms have been described, including antibiosis, production of lytic enzymes, parasitism, induction of host resistance, and competition for limiting nutrients and space [2,8,9,10] Results described in these studies are mostly correlative and provide indirect evidence for possible involvement of one or more of these components in the mechanism of action. This may be due to the lack of an understanding of the key biochemical and molecular processes occurring within tritrophic interactions (host-pathogen-biocontrol agent) that define the effectiveness of a biocontrol system

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call