Abstract
The sclerotium of Wolfiporia cocos has been used as an edible mushroom and/or a traditional herbal medicine for centuries. W. cocos sclerotial formation is dependent on parasitism of the wood of Pinus species. Currently, the sclerotial development mechanisms of W. cocos remain largely unknown and the lack of pine resources limit the commercial production. The CAZymes (carbohydrate-active enzymes) play important roles in degradation of the plant cell wall to provide carbohydrates for fungal growth, development, and reproduction. In this study, the transcript profiles from W. cocos mycelium and 2-months-old sclerotium, the early stage of sclerotial growth, were specially analyzed using de novo sequencing technology. A total of 142,428,180 high-quality reads of mycelium and 70,594,319 high-quality reads of 2-months-old sclerotium were obtained. Additionally, differentially expressed genes from the W. cocos mycelium and 2-months-old sclerotium stages were analyzed, resulting in identification of 69 CAZymes genes which were significantly up-regulated during the early stage of sclerotial growth compared to that of in mycelium stage, and more than half of them belonged to glycosyl hydrolases (GHs) family, indicating the importance of W. cocos GHs family for degrading the pine woods. And qRT-PCR was further used to confirm the expression pattern of these up-regulated CAZymes genes. Our results will provide comprehensive CAZymes genes expression information during W. cocos sclerotial growth at the transcriptional level and will lay a foundation for functional genes studies in this fungus. In addition, our study will also facilitate the efficient use of limited pine resources, which is significant for promoting steady development of Chinese W. cocos industry.
Highlights
Wolfiporia cocos (Schwein.) Ryvarden et Gilb. (Basidiomycota, Polyporaceae) is a fungus that parasitizes the roots of diverse species of Pinus
The results indicated that 69 carbohydrate-active enzymes (CAZymes) genes were significantly up-regulated (≥1.5-fold) in the 2-months-old sclerotium compared to that of in mycelium (Supplementary Table S2, yellow fluorescence label), containing 43 glycosyl hydrolases (GHs), 17 GTs, five carbohydrate esterases (CEs), two polysaccharide lyases (PLs), and two auxiliary activities (AAs)
The lack of Pinus species materials currently limits the commercial production of W. cocos sclerotia
Summary
Wolfiporia cocos (Schwein.) Ryvarden et Gilb. (Basidiomycota, Polyporaceae) is a fungus that parasitizes the roots of diverse species of Pinus. The fungus has a wide distribution in East Asia, including China, Japan, and Korea, and other regions of the world (Dai et al, 2009; Esteban, 2009; Wang et al, 2013). Wolfiporia cocos sclerotial formation is dependent on parasitism of the wood of Pinus species (Kubo et al, 2006). Commercial production of W. cocos sclerotia is currently limited by severe habitat destruction, ineffective protection, and the lack of Pinus species materials (Wang et al, 2012). Studying the parasitic mechanisms of W. cocos on Pinus species and the genetic basis of sclerotial development will improve our understanding of the overall biology of the fungus and may facilitate commercial production
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.