Abstract

ABSTRACTTo improve the accuracy of the magnetic flux leakage (MFL) nondestructive testing in practical applications, it is very significant and key to deal with the detected MFL signals. As for the de-noising process of the MFL signals, a multilevel filtering approach based on wavelet de-noising combined with median filtering is proposed. By analyzing and comparing the de-noising properties of three wavelet families, i.e., Daubechies wavelet, Coiflets wavelet, and Symlets wavelet, two wavelet bases with the best de-noising performance are recognized and selected, namely sym6 and sym8 (the Symlets wavelet functions of order 6 and 8). Then, a new cascaded filter is constructed by combining sym6 and sym8 wavelets and cascading the median filtering method. An experimental platform is established to carry out the MFL testing, through the de-noising process for the measured MFL signals, and the results indicate that the proposed improved algorithm integrates with the merits of wavelet de-noising and median filtering. Compared with the traditional wavelet de-noising, the improved algorithm can not only improve the signal-to-noise ratio (SNR), but also reduce the de-noising error, resulting in enhancing signal quality to facilitate subsequent defect recognition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.