Abstract
According to the continuous development of coated conductors and compact cryocoolers, research and development efforts for High Temperature Superconducting (HTS) magnets are increasing using conduction cooling method. To increase the cooling efficiency and thermal stability of the HTS magnet, the coated conductor is wound by wet-winding or epoxy impregnating in vacuum after dry-winding. Due to the large Lorentz force and thermal contraction, stress analysis of the composite material, which is composed of HTS conductor, insulation layer and epoxy layer, is necessary to assure the mechanical stability of the HTS magnets. Mechanical strength for a/b axis, which is parallel to the conductor surface, is usually strong enough to endure the large tensile stress due to the tough substrate material. However, c-axis strength, which is perpendicular to the conductor surface, is not strong enough to ensure the large Lorentz force. The de-lamination of the multi-layered HTS tape in a coil structure can occur and the results were previously reported. Therefore, the test data for allowable c-axis strength is necessary to design the mechanical stability of the HTS coil. This paper describes the experimental results for the c-axis tensile strength of various coated conductors. The results show the wide divergence of the c-axis tension force from 18 MPa to 53 MPa. Through the FEM analysis for multi-layered structure of the HTS tape, concept design for HTS tape of enhanced c-axis strength is suggested.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.