Abstract

This work presents an extension of the highly efficient de-homogenization method for obtaining high-resolution, near-optimal 2D topologies optimized for minimum compliance subjected to multiple load cases. We perform a homogenization-based topology optimization based on stiffness optimal Rank-N microstructure parameterizations to obtain stiffness optimal multi-scale designs on relatively coarse grids. To avoid relatively thin microstructure features, we regularize the design by introducing a material indicator field which results in well-defined widths and structural boundaries. In order to avoid singularities from the multiple load case problem, the orientations of the microstructures are further regularized. Subsequently, we derive a single-scale interpretation of stiffness optimal multi-scale designs on a fine grid using de-homogenization. The single-scale interpretation can be derived without costly postprocessing analysis on the fine grid, as an implicit boundary formulation is used.The effect of starting guesses is discussed, as they are non-trivial for Rank-N microstructures. Different numerical examples verify the performance of the inexpensive high-resolution solutions, both in comparison to the Rank-N based homogenization solutions, to equivalent density-based large-scale solutions, as well as to strict isotropic microstructure solutions. Depending on starting guesses, the approach consistently delivers structural performance values within a few percent of density-based large-scale solutions with a CPU time reduction factor of more than 300. Finally, we confirm that isotropic as well as orthogonal Rank-2 microstructure models are inferior to stiffness optimal anisotropic microstructure models for minimum compliance problems subjected to multiple load cases.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call