Abstract

We grew high-quality single crystals of SrCo2P2 with the ThCr2Si2-type tetragonal structure, and clarified the Fermi surface properties by carrying out de Haas–van Alphen (dHvA) experiments and energy band calculations. SrCo2P2 is known to be a nearly ferromagnetic compound, where the magnetic susceptibility follows the Curie–Weiss law above 200 K, with the effective magnetic moment μeff = 1.72 μB/Co, but becomes almost constant below about 100 K. The electronic specific heat coefficient γ is thus relatively large, being γ = 40 mJ/(K2·mol). Detected dHvA branches possess the corresponding cyclotron effective masses \(m_{\text{c}}^{*}\), ranging from 0.87 to 7.2 m0 (m0: rest mass of an electron). The angular dependences of the dHvA frequencies are well explained by the results of full-potential linearized augmented plane wave (FLAPW) energy band calculations, revealing a multiply-connected band 25th hole Fermi surface and a compensated nearly cylindrical band 26th electron Fermi surface. It is thus conclud...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call