Abstract

Let $Z = (Z_0, Z_1, \cdots)$ be a sequence of random variables taking values in a countable state space $I$. We use a generalization of exchangeability called partial exchangeability. $Z$ is partially exchangeable if for two sequences $\sigma, \tau \in I^{n+1}$ which have the same starting state and the same transition counts, $P(Z_0 = \sigma_0, Z_1 = \sigma_1, \cdots, Z_n = \sigma_n) = P(Z_0 = \tau_0, Z_1 = \tau_1, \cdots, Z_n = \tau_n)$. The main result is that for recurrent processes, $Z$ is a mixture of Markov chains if and only if $Z$ is partially exchangeable.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.