Abstract

We analyse the behaviour of the MacDowell–Mansouri action with internal symmetry group under the De Donder–Weyl Hamiltonian formulation. The field equations, known in this formalism as the De Donder–Weyl equations, are obtained by means of the graded Poisson–Gerstenhaber bracket structure present within the De Donder–Weyl formulation. The decomposition of the internal algebra allows the symmetry breaking , which reduces the original action to the Palatini action without the topological term. We demonstrate that, in contrast to the Lagrangian approach, this symmetry breaking can be performed indistinctly in the polysymplectic formalism either before or after the variation of the De Donder–Weyl Hamiltonian has been done, recovering Einstein’s equations via the Poisson–Gerstenhaber bracket.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.