Abstract

Monte-Carlo simulation calculation have been performed for 855 MeV electrons channeling in (110) planes of a diamond single crystal. The continuum potential picture has been utilized. Both, the transverse potential and the angular distributions of the scattered electrons at screened atoms are based on the Doyle–Turner scattering factors which were extrapolated with the functional dependence of the Molière representation to large momentum transfers. Scattering cross-sections at bound electrons have been derived for energies less than 30 keV from the double differential cross-section as function of both, energy and momentum transfer, taking into account also longitudinal and transverse excitations. For energies above 30 keV the Møller cross-section is used. The dynamics of the particle in the continuum transverse potential has been described classically. Results of the channeling process are presented in terms of instantaneous transition rates as function of the penetration depth, indicating that channeling can be described by a single exponential function only after about 15 mu m when the equilibration phase has been reached. As a byproduct, improved drift and diffusion coefficients entering the Fokker–Planck equation have been derived with which its predictive power can be improved.Graphic abstract

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.