Abstract
De Broglie’s association of a wave to particles is a fundamental concept in the quantum mechanical description of nature. The wave oscillation is referred to alternatively as the “de Broglie clock”, the “Compton clock”, or the “de Broglie periodic phenomenon”. In the present paper it is shown that Dirac’s relativistic quantum mechanics, complemented with the dynamical time operator recently introduced, provides a consistent theoretical description of: (i) the generation of the de Broglie wave through Lorentz boosts; and (ii) the characteristics of the resonance observed in electron channeling through thin crystals as responding to both the periodicity derived from the adjustment of the de Broglie period to the crystal interatomic distance (resonance energy) and the periodicity of the predicted trembling motion (Zitterbewegung). One can conclude that the channeling experiments provide the first direct evidence of the electron Zitterbewegung, and that the de Broglie period is an intrinsic property of matter arising from a self-adjoint dynamical time operator.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.