Abstract
We characterize the Hermite–Biehler (de Branges) functions E which correspond to Schroedinger operators with \(L^2\) potential on the finite interval. From this characterization one can easily deduce a recent theorem by Horvath. We also obtain a result about location of resonances.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.