Abstract

Krein-de Branges spectral theory establishes a correspondence between the class of differential operators called canonical Hamiltonian systems and measures on the real line with finite Poisson integral. We further develop this area by giving a description of canonical Hamiltonian systems whose spectral measures have logarithmic integral converging over the real line. This result can be viewed as a spectral version of the classical Szego theorem in the theory of polynomials orthogonal on the unit circle. It extends Krein-Wiener completeness theorem, a key fact in the prediction of stationary Gaussian processes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.