Abstract

BackgroundDDX52 is a type of DEAD/H box RNA helicase that was identified as a novel prostate cancer (PCa) genetic locus and possible causal gene in a European large-scale transcriptome-wide association study. However, the functions of DDX52 in PCa remain undetermined. The c-Myc oncogene plays a crucial role in the development of PCa, but the factors that regulate the activity of c-Myc in PCa are still unknown.MethodsWe determined DDX52 protein levels in PCa tissues using immunohistochemistry (IHC). DDX52 expression and survival outcomes in other PCa cohorts were examined using bioinformatics analysis. The inhibition of DDX52 via RNA interference with shRNA was used to clarify the effects of DDX52 on PCa cell growth in vitro and in vivo. Gene set enrichment analysis and RNA sequencing were used to explore the signaling regulated by DDX52 in PCa. Western blotting and IHC were used to determine the possible DDX52 signaling mechanism in PCa.ResultsDDX52 expression was upregulated in PCa tissues. Bioinformatics analysis showed that the level of DDX52 further increased in advanced PCa, with a high DDX52 level indicating a poor outcome. In vitro and in vivo experiments showed that downregulating DDX52 impeded the growth of PCa cells. High DDX52 levels contributed to activating c-Myc signaling in PCa patients and PCa cells. Furthermore, DDX52 expression was regulated by c-Myc and positively correlated with c-Myc expression in PCa.ConclusionDDX52 was overexpressed in PCa tissues in contrast to normal prostate tissues. DDX52 knockdown repressed the growth of PCa cells in vitro and in vivo. Deleting c-Myc inhibited DDX52 expression, which affected the activation of c-Myc signaling.

Highlights

  • Prostate cancer (PCa) is the leading cause of cancer mortality among males worldwide [1]

  • DDX52 expression was regulated by c-Myc, and c-Myc signaling was inhibited following the disruption of DDX52 in prostate cancer (PCa) cells

  • DDX52 is associated with the development of human PCa In line with a report that predicted that DDX52 expression is correlated with PCa risk [9], we determined the expression levels of DDX52 in normal (n = 85) and PCa (n = 83) tissues using IHC

Read more

Summary

Introduction

Prostate cancer (PCa) is the leading cause of cancer mortality among males worldwide [1]. The amplification of c-Myc is a very common genetic change that is implicated in all stages of PCa [3]. The amplification of c-Myc is higher in metastatic PCa (37%) compared to primary PCa (8%) [5, 6], indicating the critical role c-Myc expression plays in the progression of PCa. Transgenic mice expressing human c-Myc generated murine prostatic intraepithelial neoplasia followed by invasive tumors [7]. How c-Myc functions in PCa has been largely unexplored. DDX52 is a type of DEAD/H box RNA helicase that was identified as a novel prostate cancer (PCa) genetic locus and possible causal gene in a European large-scale transcriptome-wide association study. The c-Myc oncogene plays a crucial role in the development of PCa, but the factors that regulate the activity of c-Myc in PCa are still unknown

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.