Abstract
R-loops are three-stranded structures consisting of a DNA/RNA hybrid and a displaced DNA strand. The regulatory factors required to process this fundamental genetic structure near double-strand DNA breaks (DSBs) are not well understood. We previously reported that cellular depletion of the ATP-dependent DEAD box RNA helicase DDX5 increases R-loops genome-wide causing genomic instability. In this study, we define a pivotal role for DDX5 in clearing R-loops at or near DSBs enabling proper DNA repair to avoid aberrations such as chromosomal deletions. Remarkably, using the non-homologous end joining reporter gene (EJ5-GFP), we show that DDX5-deficient U2OS cells exhibited asymmetric end deletions on the side of the DSBs where there is overlap with a transcribed gene. Cross-linking and immunoprecipitation showed that DDX5 bound RNA transcripts near DSBs and required its helicase domain and the presence of DDX5 near DSBs was also shown by chromatin immunoprecipitation. DDX5 was excluded from DSBs in a transcription- and ATM activation-dependent manner. Using DNA/RNA immunoprecipitation, we show DDX5-deficient cells had increased R-loops near DSBs. Finally, DDX5 deficiency led to delayed exonuclease 1 and replication protein A recruitment to laser irradiation-induced DNA damage sites, resulting in homologous recombination repair defects. Our findings define a role for DDX5 in facilitating the clearance of RNA transcripts overlapping DSBs to ensure proper DNA repair.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.