Abstract

The type X collagen gene (Col10a1), is a specific molecular marker of hypertrophic chondrocytes during endochondral ossification. Col10a1 expression is known to be influenced by many regulators. In this study, we aim to investigate how DEAD-box helicase 5 (DDX5), a potential binding factor for Col10a1 enhancer, may play a role in Col10a1 expression and chondrocyte hypertrophic differentiation in vitro. The potential binding factors of the 150-bp Col10a1 cis-enhancer were identified with the hTFtarget database. The expression of DDX5 and COL10A1 was detected by quantitative real-time PCR (qRT-PCR) and Western blot in chondrogenic ATDC5 and MCT cell models with or without Ddx5 knockdown or overexpression. Dual-luciferase reporter assay and chromatin immunoprecipitation (ChIP) were performed to determine the interaction between DDX5 and the Col10a1 enhancer. The effect and mechanism of DDX5 on chondrocyte differentiation and maturation was evaluated by alcian blue, alkaline phosphatase (ALP), and alizarin red staining in ATDC5 cell lines with stable knockdown of Ddx5. DDX5 was identified as a potential binding factor for the Col10a1 enhancer. The expression of DDX5 in hypertrophic chondrocytes was higher than that in proliferative chondrocytes. Knockdown of Ddx5 decreased, while overexpression of Ddx5 slightly increased COL10A1 expression. DDX5 promotes the enhancer activity of Col10a1 as demonstrated by dual-luciferase reporter assay, and the ChIP experiment suggests a direct interaction between DDX5 and the Col10a1 enhancer. Compared to the control (NC) group, we observed weaker alcian blue and ALP staining intensity in the Ddx5 knockdown group of ATDC5 cells cultured both for 7 and 14 days. Whereas weaker alizarin red staining intensity was only found in the Ddx5 knockdown group of cells cultured for 7 days. Meanwhile, knockdown of Ddx5 significantly reduced the level of runt-related transcription factor 2 (RUNX2) in related ATDC5 cells examined. Our results suggest that DDX5 acts as a positive regulator for Col10a1 expression and may cooperate with RUNX2 together to control Col10a1 expression and promote the proliferation and maturation of chondrocytes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.