Abstract

Mammalian DDX23 is involved in multiple biological processes, such as RNA processing and antiviral responses. However, the function of teleost DDX23 still remains unclear. In this paper, we have cloned the DDX23 homologue of black carp (Mylopharyngodon piceus) (bcDDX23) and elucidated its role in the antiviral innate immunity. The coding region of bcDDX23 comprises 2427 nucleotides and encodes 809 amino acids. The transcription of bcDDX23 was promoted by the stimulation of LPS, poly(I:C), and SVCV; and immunoblotting (IB) assay showed that bcDDX23 migrated aground 94.5 kDa. Immunofluorescence (IF) assay revealed that bcDDX23 was mainly distributed in the nucleus, and the amount of cytosolic bcDDX23 was significantly increased after SVCV infection. The reporter assay showed that bcDDX23 inhibited bcMAVS-mediated transcription of the IFN promoter. And the co-immunoprecipitation (co-IP) assays identified the interaction between bcDDX23 and bcMAVS. Furthermore, co-expressed bcDDX23 significantly inhibited bcMAVS-mediated antiviral ability against SVCV in EPC cells, and knockdown of bcDDX23 enhanced the resistance of host cells against SVCV. Overall, our results conclude that bcDDX23 targets bcMAVS and suppresses MAVS-mediated IFN signaling, which sheds light on the regulation of IFN signaling in teleost fish.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call