Abstract
Abstract Glioblastoma (WHO Grade IV glioma) is the most aggressive brain cancer. The current standard of care treatment includes surgery, radiation, and chemotherapy. Tumor recurrence is almost inevitable as less than 50% of patients survive more than two years. The low survival rate poses a dire need to develop an effective therapy for GBM patients. GBM cells are resistant to treatment, as they activate their DNA damage response mechanisms to overcome the effects of radiation and temozolomide (TMZ) treatments. Recurrent tumors can arise from slow cycling and self-renewing stem/tumor-initiating cells resistant to radiation and TMZ. No second-line therapy was proven to prolong survival after TMZ failure. Magmas (Mitochondria-associated protein involved in granulocyte-macrophage colony-stimulating factor signal transduction) is a subunit of the TIM23 complex regulating precursor protein trafficking into the mitochondrial matrix. Magmas is encoded by pam16, known to be upregulated in human pituitary adenomas, prostate cancer and GBM. Previous studies have demonstrated that Magmas negatively regulates the stimulatory activity of Pam18, which in turn stimulates the ATPase activity of mitochondrial heat shock protein 70 (mtHsp70). No small molecules targeting Magmas are in clinical use. We developed a novel small molecule inhibitor (BT9) that has been specifically designed to inhibit Magmas binding to Pam18. BT9 induces apoptosis through cleavage of caspase-3, reduced mitochondrial respiration and glycolysis. Our recent findings also demonstrate that BT9 treatment reduced protein trafficking of Lon protease into the mitochondrial matrix. Pretreatment of glioma cells with BT9 sensitizes cells to radiation treatment and enhances the TMZ activity. BT9 can cross the blood-brain-barrier and improve survival in intracranial glioma PDX models. BT9 has potential therapeutic value by directly dysregulating mitochondrial function in GBM, enhancing radiation and chemotherapy response, and improving survival in a relevant animal model.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.