Abstract

Abstract BACKGROUND Gliomas exhibit significant heterogeneity in treatment response and characteristically deploy resistance mechanisms that render conventional therapies ineffective. Recently, novel agents have been developed that target regulators of differential energy pathways specifically utilized by gliomas. We previously reported on the targeting of Nicotinamide Phosphoribosyltransferase (NAMPT), the rate-limiting enzyme of the NAD+ salvage pathway and its essential role in glioma cell energy metabolism. Here, we determined the mechanisms by which glioma cells bypass blockade of energy metabolism and develop resistance to NAMPT inhibitors. METHODS Using isogenic parental and drug-resistant patient-derived glioma stem-like cells (GSCs), we examined adaptive changes after NAMPT inhibition in glycolysis, mitochondrial function (oxidative state, basal respiration rate, spare respiratory capacity, maximum respiration capacity and proton leak) and metabolite levels using Agilent Seahorse assay and targeted metabolomics. Cross reactivity across various NAMPT inhibitors was measured using Cell Titer Glo assay. RESULTS GSCs exposed for an extended period to sub-lethal doses of FK866, a potent NAMPT inhibitor, acquired drug resistance to the agent which were also cross-resistant to other NAMPT inhibitors. Drug-resistant GSCs showed a decrease in extracellular acidification rate and oxygen consumption rate compared to isogenic parental lines. Further, metabolomic analysis showed a high accumulation of glutamate, creatine and histidine metabolites in these cells. These results indicate a shift in metabolism of drug-resistant GSCs from carbon metabolism to nitrogen metabolism. CONCLUSIONS GSCs resistant to the NAMPT inhibitor, FK866 showed cross resistance to other NAMPT inhibitors indicating specificity of this effect. The resistance mechanism involves a shift of preferential energy generation from glycolysis to amino acid metabolism which allows the cells to use alternative methods to generate NAD. Additional results from ongoing studies to delineate the mechanisms of metabolic switch in the drug resistance lines will be presented that will help develop strategies to combat resistance to NAMPT inhibitors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call