Abstract
The increase in the deployment of IoT networks has improved productivity of humans and organisations. However, IoT networks are increasingly becoming platforms for launching DDoS attacks due to inherent weaker security and resource-constrained nature of IoT devices. This paper focusses on detecting DDoS attack in IoT networks by classifying incoming network packets on the transport layer as either “Suspicious” or “Benign” using unsupervised machine learning algorithms. In this work, two deep learning algorithms and two clustering algorithms were independently trained for mitigating DDoS attacks. We lay emphasis on exploitation based DDOS attacks which include TCP SYN-Flood attacks and UDP-Lag attacks. We use Mirai, BASHLITE and CICDDoS2019 dataset in training the algorithms during the experimentation phase. The accuracy score and normalized-mutual-information score are used to quantify the classification performance of the four algorithms. Our results show that the autoencoder performed overall best with the highest accuracy across all the datasets.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.