Abstract

Myxoid liposarcoma is a malignant adipogenic neoplasm characterized by prominent arborizing capillaries, occasional lipoblasts, and primitive-appearing spindle cells in a myxoid background. A recurrent translocation in myxoid liposarcoma results in an oncoprotein consisting of full-length DDIT3 (CHOP) fused to an N-terminal segment of either FUS (TLS) or, less often, EWSR1. Here, we explore the diagnostic significance of DDIT3 expression in myxoid liposarcoma using a mouse monoclonal antibody recognizing an epitope in the N-terminal region. Studying a total of 300 tumors, we find diffuse, moderate-to-strong nuclear-localized anti-DDIT3 immunoreactivity in all 46 cases of myxoid liposarcoma representing 36 unique tumors, including 6 cases with high-grade (round cell) morphology. DDIT3 immunohistochemistry also highlighted a distinctive vasculocentric growth pattern in 7 myxoid liposarcomas treated with neoadjuvant radiation. In contrast, the vast majority of other examined lipomatous and myxoid neoplasms exhibited no DDIT3 expression; limited, weak immunoreactivity in <10% of cells was infrequently observed in dedifferentiated liposarcoma (6/39, 15%), solitary fibrous tumor (3/12, 25%), pleomorphic liposarcoma (1/15, 7%), and high-grade myxofibrosarcoma (2/17, 12%). Although this minimal DDIT3 expression did not correlate with DDIT3 amplification or myxoid liposarcoma-like morphology in dedifferentiated liposarcoma, there was evidence among sarcomas (excluding myxoid liposarcoma) of a relationship between expression and exposure to neoadjuvant radiation or cytotoxic chemotherapy. The constellation of findings indicates that DDIT3 immunohistochemistry may have utility in the evaluation of myxoid and lipomatous neoplasms to support the diagnosis of myxoid liposarcoma.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call