Abstract

ONC201, an imipridone that is a selective antagonist of the G protein-coupled receptors dopamine receptor D2 (DRD2) and D3 (DRD3), has exhibited tumor shrinkage and an exceptional safety profile in a phase II recurrent glioblastoma clinical trial (Arrillaga et al, 2017). In vitro and in vivo studies have previously demonstrated single agent ONC201 efficacy in glioblastoma models (Allen et al 2013). In vitro efficacy profiling of ONC201 in the Genomic of Drug Sensitivity in Cancer (GDSC) collection of cell lines confirmed broad anti-cancer efficacy with high sensitivity in human brain cancer cell lines. DRD2 is overexpressed in glioblastoma and DRD2 antagonism induces tumor cell apoptosis via the same signaling pathways that respond to ONC201. Investigation of The Cancer Genome Atlas (TCGA) revealed that DRD2 is highly expressed in glioblastoma relative to other dopamine receptor family members and that genetic aberrations were rare. High expression of DRD2 occurred in primary, rather than secondary, glioblastoma and was associated with a poor prognosis. Immunohistochemistry analyses of tissue microarrays revealed DRD2 overexpression in glioblastoma relative to normal brain. A linear correlation between DRD2 mRNA and ONC201 GI50 was observed among glioblastoma cell lines in the NCI60 panel. A significant induction of serum prolactin, a surrogate biomarker of target engagement, was detected in ONC201-treated glioblastoma patients. Interestingly, expression of DRD5, a D1-like dopamine receptor that counteracts DRD2 signaling, was significantly inversely correlated with ONC201 potency in the NCI60 and GDSC datasets (P <.05). Furthermore, a missense DRD5 mutation was identified in cancer cells with acquired resistance to ONC201. Resistance could be recapitulated with overexpression of the mutant DRD5 gene or, to a lesser extent, with the wild-type gene. In conclusion, the DRD2 pathway is a therapeutic target that is dysregulated in glioblastoma and contains biomarkers of tumor sensitivity to ONC201 that are under clinical evaluation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call