Abstract

We solve the Schrödinger equation with the improved Rosen−Morse potential energy model in D spatial dimensions. The D-dimensional rotation-vibrational energy spectra have been obtained by using the supersymmetric shape invariance approach. The energies for the 33[Formula: see text]g+ state of the Cs2 molecule and the 51Δg state of the Na2 molecule increase as D increases in the presence of fixed vibrational quantum number and various rotational quantum numbers. We observe that the change in behavior of the vibrational energies in higher dimensions remains similar to that of the three-dimensional system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call