Abstract

Drug-drug interactions (DDI) may lead to unexpected side effects, which is a growing concern in both academia and industry. Many DDIs have been reported, but the underlying mechanisms are not well understood. Predicting and understanding DDIs can help researchers to improve drug safety and protect patient health. Here, we introduce DDI-GCN, a method that utilizes graph convolutional networks (GCN) to predict DDIs based on chemical structures. We demonstrate that this method achieves state-of-the-art prediction performance on the independent hold-out set. It can also provide visualization of structural features associated with DDIs, which can help us to study the underlying mechanisms. To make it easy and accessible to use, we developed a web server for DDI-GCN, which is freely available at http://wengzq-lab.cn/ddi/.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.