Abstract

Over the last 5 years, classical and optimized Schwarz methods with Robin transmission conditions have been developed for anisotropic elliptic problems discretized by Discrete Duality Finite Volume (DDFV) schemes. We present here the case of higher order transmission conditions in the framework of DDFV. We prove convergence of the algorithm for a large class of symmetric transmission operators, including the discrete Ventcell operator. We also illustrate numerically that using optimized Ventcell transmission conditions leads to much faster algorithms than when using Robin transmission conditions, especially in case of anisotropic elliptic operators.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.