Abstract

In this work, the flows inside the high pressure turbine (HPT) vane and stage are studied with the help of a high-fidelity delayed detached eddy simulation (DDES) code. This work intends to study the fundamental nozzle/blade interaction with special attention paid to the development and transportation of the vane wake vortex. There are two motivations for this work. On the one hand, the high pressure turbine operates at both transonic Mach numbers and high Reynolds numbers, which imposes a great challenge to modern computational fluid dynamics (CFD), especially for scale-resolved simulation methods. An accurate and efficient high-fidelity CFD solver is very important for a thorough understanding of the flow physics and the design of more efficient HPT. On the other hand, the periodic wake vortex shedding is an important origin of turbine losses and unsteadiness. The wake and vortex not only cause losses themselves, but also interact with the shock wave (under transonic working condition), pressure waves, and have a strong impact on the downstream blade surface (affecting boundary layer transition and heat transfer). Built on one of our previous DDES simulations of a HPT vane VKI LS89, this work further investigates the development and length characteristics of the wake vortex, provides explanations of the length characteristics and reveals the transportation of the wake vortex into the downstream rotor passage along with its impact on the downstream aero-thermal performance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call