Abstract
Diffusion-based generative models have recently exhibited powerful generative performance. However, as many attributes exist in the data distribution and owing to several limitations of sharing the model parameters across all levels of the generation process, it remains challenging to control specific styles for each attribute. To address the above problem, we introduce decoupled denoising diffusion models (DDDMs) with disentangled representations, which can enable effective style transfers for each attribute in generative models. In particular, we apply DDDMs for voice conversion (VC) tasks, tackling the intricate challenge of disentangling and individually transferring each speech attributes such as linguistic information, intonation, and timbre. First, we use a self-supervised representation to disentangle the speech representation. Subsequently, the DDDMs are applied to resynthesize the speech from the disentangled representations for style transfer with respect to each attribute. Moreover, we also propose the prior mixup for robust voice style transfer, which uses the converted representation of the mixed style as a prior distribution for the diffusion models. The experimental results reveal that our method outperforms publicly available VC models. Furthermore, we show that our method provides robust generative performance even when using a smaller model size. Audio samples are available at https://hayeong0.github.io/DDDM-VC-demo/.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the AAAI Conference on Artificial Intelligence
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.