Abstract

Carnation (Dianthus caryophyllus L.) is one of the most important and typical ethylene sensitive cut flowers worldwide, although how ethylene influences the petal senescence process in carnation remains largely unknown. Here, we screened out one of the key transcription factors, DcWRKY75, using a constructed ethylene induced petal senescence transcriptome in carnation and found that it shows quick induction by ethylene treatment. Silencing of DcWRKY75 delays ethylene induced petal senescence in carnation. Molecular evidence confirms that DcWRKY75 can bind to the promoter regions of two main ethylene biosynthetic genes (DcACS1 and DcACO1) and a couple of senescence associated genes (DcSAG12 and DcSAG29) to activate their expression. Furthermore, we show that DcWRKY75 is a direct target gene of DcEIL3-1, which is a homolog of the ethylene signaling core transcription factor EIN3 in Arabidopsis. DcEIL3-1 can physically interact with DcWRKY75 and silencing of DcEIL3-1 also delays ethylene induced petal senescence in carnation and inhibits the ethylene induced expression of DcWRKY75 and its target genes. The present study demonstrates that the transcriptional regulation network is vitally important for ethylene induced petal senescence process in carnation and potentially in other ethylene sensitive cut flowers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call