Abstract
Wind turbine blades (WTBs) are prone to damage from their working environment, including surface peeling and cracks. Early and effective detection of surface defects on WTBs can avoid complex and costly repairs and serious safety hazards. Traditional object detection methods have disadvantages of insufficient detection capabilities, extended model inference times, low recognition accuracy for small objects, and elongated strip defects within WTB datasets. In light of these challenges, a novel model named DCW-YOLO for surface damage detection of WTBs is proposed in this research, which leverages image data collected by unmanned aerial vehicles (UAVs) and the YOLOv8 algorithm for image analysis. Firstly, Dynamic Separable Convolution (DSConv) is introduced into the C2f module of YOLOv8, allowing the model to more effectively focus on the geometric structural details associated with damage on WTBs. Secondly, the upsampling method is replaced with the content-aware reassembly of features (CARAFE), which significantly minimizes the degradation of image characteristics throughout the upsampling process and boosts the network’s ability to extract features. Finally, the loss function is substituted with the WIoU (Wise-IoU) strategy. This strategy allows for a more accurate regression of the target bounding boxes and helps to improve the reliability in the localization of WTBs damages, especially for low-quality examples. This model demonstrates a notable superiority in surface damage detection of WTBs compared to the original YOLOv8n and has achieved a substantial improvement in the mAP@0.5 metric, rising from 91.4% to 93.8%. Furthermore, in the more rigorous mAP@0.5–0.95 metric, it has also seen an increase from 68.9% to 71.2%.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.