Abstract
The detection and location of image splicing forgery are a challenging task in the field of image forensics. It is to study whether an image contains a suspicious tampered area pasted from another image. In this paper, we propose a new image tamper location method based on dual-channel U-Net, that is, DCU-Net. The detection framework based on DCU-Net is mainly divided into three parts: encoder, feature fusion, and decoder. Firstly, high-pass filters are used to extract the residual of the tampered image and generate the residual image, which contains the edge information of the tampered area. Secondly, a dual-channel encoding network model is constructed. The input of the model is the original tampered image and the tampered residual image. Then, the deep features extracted from the dual-channel encoding network are fused for the first time, and then the tampered features with different granularity are extracted by dilation convolution, and then, the secondary fusion is carried out. Finally, the fused feature map is input into the decoder, and the predicted image is decoded layer by layer. The experimental results on Casia2.0 and Columbia datasets show that DCU-Net performs better than the latest algorithm and can accurately locate tampered areas. In addition, the attack experiments show that DCU-Net model has good robustness and can resist noise and JPEG recompression attacks.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.