Abstract

In lossy image compression schemes utilizing the discrete cosine transform (DCT), quantization of the DCT coefficients introduces error in the image representation and a loss of signal information. At high compression ratios, this introduced error produces visually undesirable compression artifacts that can dramatically lower the perceived quality of a particular image. This paper provides a spatial domain model of the quantization error based on a statistical noise model of the error introduced when quantizing the DCT coefficients. The resulting theoretically derived spatial domain quantization noise model shows that in general the compression noise in the spatial domain is both correlated and spatially varying. This provides some justification to many of the ad hoc artifact removal filters that have been proposed. More importantly, the proposed noise model can be incorporated in a post-processing algorithm that correctly incorporates the spatial correction of the quantizer error. Experimental results demonstrate the effectiveness of this approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.