Abstract

In the immune system, C-type lectins and CTLDs have been shown to act both as adhesion and as pathogen recognition receptors. The Dendritic cell-specific ICAM-3 grabbing non-integrin (DC-SIGN) and its homologs in human and mouse represent an important C-type lectin family. DC-SIGN contains a lectin domain that recognizes in a Ca2+-dependent manner carbohydrates such as mannose-containing structures present on glycoproteins such as ICAM-2 and ICAM-3. DC-SIGN is a prototype C-type lectin organized in microdomains, which have their role as pathogen recognition receptors in sensing microbes. Although the integrin LFA-1 is a counter-receptor for both ICAM-2 and ICAM-3 on DC, DC-SIGN is the high affinity adhesion receptor for ICAM-2/-3. While cell–cell contact is a primary function of selectins, collectins are specialized in recognition of pathogens. Interestingly, DC-SIGN is a cell adhesion receptor as well as a pathogen recognition receptor. As adhesion receptor, DC-SIGN mediates the contact between dendritic cells (DCs) and T lymphocytes, by binding to ICAM-3, and mediates rolling of DCs on endothelium, by interacting with ICAM-2. As pathogen receptor, DC-SIGN recognizes a variety of microorganisms, including viruses, bacteria, fungi and several parasites (Cambi et al. 2005). The natural ligands of DC-SIGN consist of mannose oligosaccharides or fucose-containing Lewis-type determinants. In this chapter, we shall focus on the structure and functions of DC-SIGN and related CTLDs in the recognition of pathogens, the molecular and structural determinants that regulate the interaction with pathogen-associated molecular patterns. The heterogeneity of carbohydrate residues exposed on cellular proteins and pathogens regulates specific binding of DC-expressed C-type lectins that contribute to the diversity of immune responses created by DCs (van Kooyk et al. 2003a; Cambi et al. 2005).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.