Abstract
AbstractThe MAC protocol for a cognitive radio network should allow access to unused spectrum holes without (or with minimal) interference to incumbent system devices. To achieve this main goal, in this paper a distributed cognitive radio MAC (DCR‐MAC) protocol is proposed for wireless ad hoc networks that provides for the detection and protection of incumbent systems around the communication pair. DCR‐MAC operates over a separate common control channel and multiple data channels; hence, it is able to deal with dynamics of resource availability effectively in cognitive networks. A new type of hidden node problem is introduced that focuses on possible signal collisions between incumbent devices and cognitive radio ad hoc devices. To this end, a simple and efficient sensing information exchange mechanism between neighbor nodes with little overhead is proposed. In DCR‐MAC, each ad hoc node maintains a channel status table with explicit and implicit channel sensing methods. Before a data transmission, to select an optimal data channel, a reactive neighbor information exchange is carried out. Simulation results show that the proposed distributed cognitive radio MAC protocol can greatly reduce interference to the neighbor incumbent devices. A higher number of neighbor nodes leads to better protection of incumbent devices. Copyright © 2008 John Wiley & Sons, Ltd.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.