Abstract

Gastric cancer has a high incidence rate, significantly threatening patients' health. Gastric histopathology images can reliably diagnose related diseases. Still, the data volume of histopathology images is too large, making misdiagnosis or missed diagnosis easy. The classification model based on deep learning has made some progress on gastric histopathology images. However, traditional convolutional neural networks (CNNs) generally use pooling operations, which will reduce the spatial resolution of the image, resulting in poor prediction results. The image feature in previous CNN has a poor perception of details. Therefore, we design a dilated CNN with a late fusion strategy (DCNNLFS) for gastric histopathology image classification. The DCNNLFS model utilizes dilated convolutions, enabling it to expand the receptive field. The dilated convolutions can learn the different contextual information by adjusting the dilation rate. The DCNNLFS model uses a late fusion strategy to enhance the classification ability of DCNNLFS. We run related experiments on a gastric histopathology image dataset to verify the excellence of the DCNNLFS model, where the three metrics Precision, Accuracy, and F1-Score are 0.938, 0.935, and 0.959.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.