Abstract

We present a method, named DCMB, for the calculations of large molecules. It is a combination of a parallel divide-and-conquer (DC) method and a mixed-basis (MB) set scheme. In this approach, atomic forces, total energy and vibrational frequencies are obtained from a series of MB calculations, which are derived from the target system utilizing the DC concept. Unlike the fragmentation based methods, all DCMB calculations are performed over the whole target system and no artificial caps are introduced so that it is particularly useful for charged and/or delocalized systems. By comparing the DCMB results with those from the conventional method, we demonstrate that DCMB is capable of providing accurate prediction of molecular geometries, total energies, and vibrational frequencies of molecules of general interest. We also demonstrate that the high efficiency of the parallel DCMB code holds the promise for a routine geometry optimization of large complex systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call