Abstract

This paper investigates a control approach for achieving reliable zero-voltage switching transitions within the entire operating range of a conventional nonisolated bidirectional dc–dc converter that utilizes synchronous rectification. The approach is based on operation in the discontinuous conduction mode with a constant reversed current of sufficient amplitude, which is achieved by load-dependent variation of the switching frequency. This paper focuses on the obtained resonant voltage transitions and provides analytical models for determining the reversed current and timing parameters that would ensure safe, reliable, and highly efficient operation of the converter. In addition, the proposed approach solves the synchronous transistor's spurious turn-on and body diode reverse recovery induced issues, does not require any additional components or circuitry for its realization, and can be entirely implemented within a digital signal controller. The effectiveness and performance of the presented control approach was confirmed in a 1-kW experimental bidirectional dc–dc converter that achieved 97% efficiency over a wide range of output powers at switching frequencies above 100 kHz.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.