Abstract

During RNA interference in plants, Dicer-like/DCL proteins process longer double-stranded RNA (dsRNA) precursors into small RNA molecules. In Arabidopsis thaliana there are four DCLs (DCL1, DCL2, DCL3, and DCL4) that interact with various associated proteins to carry out this processing. The lack of complete structural-functional information and characterization of DCLs and their associated proteins leads to this study where we have generated the structures by modelling, analysed the structures and studied the interactions of Arabidopsisthaliana DCLs with their associated proteins with the homology-derived models to screen the interacting residues. Structural analyses indicate existence of significant conserved domains that may play imperative roles during protein-protein interactions. The interaction study shows some key domain-domain (including multi-domains and inter-residue interactions) interfaces and specific residue biases (like arginine and leucine) that may help in augmenting the protein expression level during stress responses. Results point towards plausible stable associations to carry out RNA processing in a synchronised pattern by elucidating the structural properties and protein-protein interactions of DCLs that may hold significance for RNAi researchers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call