Abstract

ObjectivesDecreased deoxycytidine kinase (dCK) expression is a reported indicator of gemcitabine efficacy in pancreatic cancer, due to the impact of this kinase on gemcitabine metabolism. The transcription factor NF‐E2 p45‐related factor 2 (NRF2, also called Nfe2l2), a master regulator of redox homoeostasis, has been reported to tightly control the expression of numerous ROS‐detoxification genes and participates in drug resistance. However, the contribution of dCK to the NRF2 signalling axis has seldom been discussed and needs investigation.Materials and methodsBy overexpressing dCK in pancreatic cancer cells, we assessed the impact of dCK on NRF2 transcriptional activity. Furthermore, we measured the impact of dCK expression on the intracellular redox balance and reactive oxygen species (ROS) production. By utilizing immunohistochemical staining and tissues from pancreatic cancer patients, we assessed the correlation between dCK and NRF2 expression. Through proliferation and metastasis assays, we examined the impact of dCK expression on cell proliferation and metastasis.Results dCK negatively regulates NRF2 transcriptional activity, leading to the decreased expression of ARE‐driven antioxidant genes. In addition, dCK negatively regulates intracellular redox homoeostasis and ROS production. Negative correlations between dCK and NRF2 levels in pancreatic cancer cell lines and patient samples were observed. In vitro cell line studies suggested that dCK negatively regulated proliferation and metastasis.ConclusionDecreased dCK expression promotes NRF2‐driven antioxidant transcription, which further enhances gemcitabine treatment resistance, forming a feedback loop.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.