Abstract

To investigate whether dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) has the potential to non-invasively detect microenvironmental condition by quantitatively measuring blood perfusion, vessel wall permeability, and vascularity, and to elucidate the possible correlations between DCE-MRI quantitative parameters and the expression level of hypoxia, vascularity, and cell proliferation related molecular biomarkers. In this prospective single center clinical study, 58 patients diagnosed with cervical cancer underwent DCE-MRI before anticancer treatment were enrolled. Ktrans, Kep, Ve, and Vp were generated from Extended Toft's model. Then patients conducted colposcopy biopsy within 1 week after DCE-MRI. Pretreatment expression levels of HIF-1α, VEGF and Ki-67 were assessed and scored by immunohistochemistry on colposcopy obtained tumor specimens. In HIF-1α low-expression group, Ktrans (p=0.031) and Kep (p=0.012) values were significantly higher than the high-expression group. In VEGF high-expression group, Ktrans (p=0.044) and Ve values (p=0.021) were significantly higher than the low-expression group. In Ki-67 high-expression group, Ktrans (p=0.026) and Kep (p=0.033) were significantly higher than the low-expression group. Multiple linear regression analyses and Pearson correlation revealed that Ktrans independently negatively correlated with HIF-1α expression, Ve independently positively correlated with VEGF, and Kep independently positively correlated with Ki-67. The area under the ROC curves of Ktrans for HIF-1α, Ve for VEGF, and Kep for Ki-67 were 0.728, 0.743, 0.730, respectively. Our results suggest that DCE-MRI quantitative parameters could be potentially used as imaging markers for non-invasively detecting microenvironmental hypoxia, vascularity and proliferation in cervical cancer patients.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call