Abstract

Whole Slide Images (WSIs) are paramount in the medical field, with extensive applications in disease diagnosis and treatment. Recently, many deep-learning methods have been used to classify WSIs. However, these methods are inadequate for accurately analyzing WSIs as they treat regions in WSIs as isolated entities and ignore contextual information. To address this challenge, we propose a novel Dual-Granularity Cooperative Diffusion Model (DCDiff) for the precise classification of WSIs. Specifically, we first design a cooperative forward and reverse diffusion strategy, utilizing fine-granularity and coarse-granularity to regulate each diffusion step and gradually improve context awareness. To exchange information between granularities, we propose a coupled U-Net for dual-granularity denoising, which efficiently integrates dual-granularity consistency information using the designed Fine- and Coarse-granularity Cooperative Aware (FCCA) model. Ultimately, the cooperative diffusion features extracted by DCDiff can achieve cross-sample perception from the reconstructed distribution of training samples. Experiments on three public WSI datasets show that the proposed method can achieve superior performance over state-of-the-art methods. The code is available at https://github.com/hemo0826/DCDiff.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.