Abstract

This paper provides a comparison of the capabilities of two techniques for extending the range of conventional small-angle neutron scattering (SANS) towards the micrometre length scale, namely the double-crystal diffraction ultra-small-angle neutron scattering (DCD USANS) technique, which uses perfect silicon crystals in Bragg reflection, and spin-echo SANS (SESANS), a method that uses the spin precessions of a polarized neutron beam. Both methods encode the scattering angle to very high precision. Based on round-robin test measurements, the strengths and weaknesses of the two techniques are discussed with respect to the measurement of the particle size of monodisperse scatterers, and potential performance gains for state-of-the-art DCD USANS and SESANS instruments are investigated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.