Abstract
Yttria-stabilised zirconia (YSZ) thin films were dc-sputtered and investigated with respect to surface morphology, microstructure and film-substrate interface interaction. The films were deposited under argon/oxygen atmospheres on NiO/YSZ substrates heated to between 500 and 700°C. Dense and crack-free coatings were obtained in the thickness range of 1 to 10 μm. The film morphology varied from columnar to crystalline structure depending on the oxygen pressure and the substrate temperature. Whereas the coated films consisted of YSZ with cubic and tetragonal crystal structure under low oxygen atmospheres, the same deposition experiments on Al2O3 substrates revealed highly disordered layers of cubic YSZ. The formation of oxide layers on the NiO/YSZ substrates is due to a film-substrate redox interaction. The NiO grains close to the coating interface are partially reduced and serve as an oxygen source for the oxidation of the film. An exponential decay of the gas leakage vs. coating thickness was found.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.