Abstract

Defined solely by means of order-theoretic operations meet (min) and join (max), weighted lattice polynomial functions are particularly useful for modelling data on an ordinal scale. A special case, the discrete Sugeno integral, defined with respect to a nonadditive measure (a capacity), enables accounting for the interdependencies between input variables. However, until recently the problem of identifying the fuzzy measure values with respect to various objectives and requirements has not received a great deal of attention. By expressing the learning problem as the difference of convex functions, we are able to apply DC (difference of convex) optimization methods. Here we formulate one of the global optimization steps as a local linear programming problem and investigate the improvement under different conditions. Abbreviation: DC: difference of convex; LP: linear programming

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.