Abstract
Remote sensing change detection (RSCD) aims to utilize paired temporal remote sensing images to detect surface changes in the same area. Traditional CNN-based methods are limited by the size of the receptive field, making it difficult to capture the global features of remote sensing images. In contrast, Transformer-based methods address this issue with their powerful modeling capabilities. However, applying the Transformer architecture to image processing introduces a quadratic complexity problem, significantly increasing computational costs. Recently, the Mamba architecture based on state-space models has gained widespread application in the field of RSCD due to its excellent global feature extraction capabilities and linear complexity characteristics. Nevertheless, existing Mamba-based methods lack optimization for complex change areas, making it easy to lose shallow features or local features, which leads to poor performance on challenging detection cases and high-difficulty datasets. In this paper, we propose a Mamba-based RSCD network for difficult cases (DC-Mamba), which effectively improves the model’s detection capability in complex change areas. Specifically, we introduce the edge-feature enhancement (EFE) block and the dual-flow state-space (DFSS) block, which enhance the details of change edges and local features while maintaining the model’s global feature extraction capability. We propose a dynamic loss function to address the issue of sample imbalance, giving more attention to difficult samples during training. Extensive experiments on three change detection datasets demonstrate that our proposed DC-Mamba outperforms existing state-of-the-art methods overall and exhibits significant performance improvements in detecting difficult cases.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.