Abstract

In this article, a model predictive control (MPC) strategy based on the optimal switching sequence (OSS) concept for a single-phase grid-connected H-bridge neutral-point-clamped (H-NPC) power converter is presented. The proposed OSS-MPC algorithm considers both the grid current tracking error and the dc-link capacitor voltage balance. Special emphasis is placed on the power converter control region in order to design suitable switching sequence candidates for this multiobjective control problem. Additionally, based on an analysis of the weighting factor effect over closed-loop performance, it is possible to demonstrate that this controller parameter is relatively easy to adjust. In fact, the weighting factor only affects the peak current during transients, with no effect over the steady-state performance. As a result, the proposed OSS-MPC provides a fast closed-loop dynamic to the H-NPC converter, which operates with a fixed switching frequency at all times. This predictive control strategy is experimentally validated in a 3.5-kVA laboratory setup.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.