Abstract

In this paper, the direct modulation strategy of a three-level inverter with self stabilization of the dc link voltage is extended to a five-level inverter. Therefore, a new modeling and control strategy of a five-level three-phase diode-clamped inverter (DCI) is presented. The obtained modeling shows that modulated multilevel voltages are obtained by combination of eight different three-level functions, which are called modulation functions. Therefore, a space-vector scheme without using a Park transform is explained. Based on this algorithm, the location of the reference voltage vector can be easily determined. Then, the voltage vectors are selected to generate corresponding levels and simultaneously their durations are calculated. More over, the redundancies of different switch configurations for the generation of intermediate voltages are used to limit the deviation of capacitor voltages. Experimental results are given to illustrate the proposed control strategy of the three-phase three-level diode clamped inverter. Then, obtained results for a five-level three-phase DCI with the extended version of the control strategy are presented to show the good performances of the proposed balancing modulation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call