Abstract

Icicles are often formed under the downside surface of conductor in the wet growth icing of overhead power line. When the ice deposit around overhead power line is molten by Joule heat produced by current, the pattern of heat transfer of ice deposit with icicles is dissimilar to that without icicle, so the ice-melting model for the columnar icing conductor cannot be applied to icicle-shaped icing conductor. According to the heat-transfer characteristic of the icicle-shaped icing conductor, this paper puts forward a DC ice-melting model for the icicle-shaped icing conductor. Because this full model includes three-dimensional heat-transfer and interface movement, which cannot be solved in closed form, a finite element scheme in space-domain and a finite difference scheme in time-domain are employed to discretize the governing equations. Firstly the whole ice-melting process on the icicle-shaped icing conductor is simulated by this model. Then the simulated results are validated by ice-melting experiments in the artificial chamber. The study from the model and the experiments shows that the size and length of icicle as well as the space between the adjacent icicles are factors to affect ice-melting. With the shorter icicle space, the bigger icicle size and the longer icicle-length, the surface of ice layer is enlarged and then more heat is taken away by the convection and radiation, so the ice melting time will get longer.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call