Abstract
Multi-terminal VSC-based HVDC transmission system is the recent interest for grid integration of large-scale offshore wind farms. Protection of multi-terminal voltage source converters (VSC)-based HVDC transmission systems against DC faults is challenging. This paper presents a single-ended protection scheme for DC faults in a three-terminal VSC-HVDC transmission system. The under-voltage criterion is used to distinguish the DC faults from the transient and normal conditions. The rate of change of DC voltage and current as well as the variation of transient energy is used to discriminate the internal faults from the external faults. The DC fault current has very high value within a few milliseconds during the transient phases such as the capacitor discharging and diode freewheeling stages. Therefore, current limiting reactors are introduced in series with the DC circuit breaker to maintain the DC fault current within the breaker capacity. The single-ended protection scheme is tested with the three-terminal VSC-HVDC transmission system with current limiting reactors for various DC fault conditions. The DC fault data is generated from PSCAD/EMTDC simulation and the protection scheme is tested in MATLAB environment. Test results show that the proposed protection scheme gives reliable protection for the DC faults in a three-terminal VSC-HVDC transmission system.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Electrical Engineering & Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.