Abstract
The study deals with the dc electrical conduction of poly(methyl methacrylate)/carbon black composites of different carbon black (CB) filler concentrations (2, 6, 12 wt%). The dc electrical conductivity was studied as a function of filler concentration, and temperature in the range (20–290 K). It was found that the composites exhibit negative temperature coefficient of resistivity (NTCR) at low temperatures and enhancement in the dc electrical conductivity with both temperature and CB concentration. The observed increase of conductivity with CB concentration was interpreted through the percolation theory. The dependence of the electrical conductivity of the composites in low temperatures was analyzed in term of a formula in consistence with Mott variable rang hopping (VRH) mechanism. The observed overall mechanism of electrical conduction has been related to the transfer of electrons through the carbon black aggregations distributed in the polymer matrix.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Materials Science: Materials in Electronics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.