Abstract
The current source inverter (CSI) is a power electronics topology that allows for the realization of variable speed drives (VSD). Compared to the most common voltage source inverter (VSI), which can be directly connected to a voltage source, the CSI needs a prestage to generate a constant current bus. This article therefore seeks to challenge this “accepted” consideration that a CSI always needs this precircuit and seeks to remove this circuit by proposing an innovative i <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">dc</sub> current control scheme. The proposed scheme is applied to a single stage motor drive driven by a CSI converter. It is shown how implementing this control scheme removes the need for the front-end stage, thus removing an unnecessary converter and optimizing the efficiency at the same time. The CSI state-space equations are presented and the developed models are verified using simulations. Stability analysis of small-signal model is considered through Nyquist criterion with the robustness in presence of variations of the most important system parameters. Experimental results driving a permanent magnet synchronous machine (PMSM) are shown confirming the validity of the proposed control, potentially paving the way to a larger adoption of the CSI topologies for motor drive applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.