Abstract

This paper analyzes the effects of the input voltage unbalance and sags on the dc-bus electrolytic capacitors in adjustable-speed drives (ASDs) in order to predict their impact on expected capacitor lifetime. The key phenomenon that causes these problems is the transition of the rectifier stage from three-phase to single-phase operation. Since the equivalent series resistance increases at low frequencies, the low-order harmonic current components (e.g., 120 and 240 Hz) contribute disproportionately to the capacitor power losses and temperature rise, resulting in reduced lifetime. Closed-form expressions are developed for predicting these effects including the impact of finite line impedance, finite bus capacitance, and varying load. The impact of inverter space-vector pulsewidth-modulation switching on the capacitor loss is also included. Simulations and experimental tests are used to verify the accuracy and effectiveness of the closed-form analysis using a 5-hp ASD system

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.